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Data-driven programming

e Data drives logic
 Parameterization and scripting

* Benefits
— Faster change - test cycle
— Open program to designers
— More reusable C++
— Enables dynamic programming
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Our system

* Evolved over 5 years

e LISP inspiration

 Data format + API + script engine
 Small (70K) but widely used
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Python experience

e Just wanted token—int

* Got token— command string—~
interpreter —function— pyint—int

 Wrapper hell

* 3 Mb tough on 32 Mb console
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Talk topics

 Working with data

e Scripting support
 Advanced integration
e Wrap up
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Topic 1: Working with data
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Data format

* Basic element: arrays

e Array nodes can be any type

— Subarrays, ints, floats, strings,
symbols, more

e Load from file or create
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Example: Data file

(menu

(“bacon and eggs”
(price 12.75)
(calories 120)

)

(“fruit and cereal”
(price 11.75)
(calories 12)

)
)
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Anti-example: XML file

<menu>
<item>bacon and eggs
<price>12.75</price>
<calories>120</calories>
</item>
<item>fruit and cereal
<price>11.75</price>
<calories>12</calories>
</item>
</menu>
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Anti-example: Raw file

e No structure or annotation

“bacon and eggs”
12.75

120

“fruit and cereal”
11.75

12
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Memory representation

DataArray
DataNode*
4-byte value (union of int, float, pointers)
4-byte type
Size
File, Line } Packed into 12 bytes
Reference count

e Low overhead
e Serializable
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Basic API

// Parse using Flex
DataArray* menu = DataReadFile("menu.dta”),;

// Price
menu->FindArray(“eggs”)->FindFloat(“price”);

// Error message on wrong type
menu->FindArray(“eggs”)->FindInt(“price”);

// Says ‘'12.75" not int (menu.dta, line 3)
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Nodes are smart pointers

* Of reference counted types, like
arrays and heap strings

 That’s all to memory management
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Create your own arrays

// (price 12.75)

DataArray* price = new DataArray(2);
price->Node(0) = “price”;
price->Node(1) = 12.75;

// (eggs (price 12.75))
DataArray* arr = new DataArray(2);

arr->Node(0) = “eggs”;
arr->Node(1) = price; // adds ref count

price->Release();
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Don’t actually use strings

e Mostly use “symbols”
 Unique permanent string

* Saves memory for multiple
instances

e Fast pointer comparisons
o Still need heap strings
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Array searches

menu->FindArray(“eggs”)->FindFloat("price”);

* Of subarrays with symbol tag
e Linear with pointer comparisons

 For more speed, sort subarrays for
binary search
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Also in data files

« Comments
e Macros

e #include

e #merge

o #ifdef
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Macros

* Persistent outside of file
 Multiply reference arrays

[TRUE 1] // (happy TRUE) -> (happy 1)
[RED 1 0 0] // (color RED) -> (color 1 0 0)

[HANDLER (hit {fall_down})]
(objectl HANDLER)
(object2 HANDLER)
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Merging data files

* For each subarray, look for match
— Insert if not found
— Recurse if found

(a (b 1)) // original
(a (b 2) (c 2)) // merge
(a(b1l)(c?2))// result
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Cache files for fast loading

* Avoid text parsing
* Load then serialize into binary file

* Requires special handling of
macros and #ifdef
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Program configuration

* Load config file at startup
* Globally accessible

 Encrypt on caching (or you may be
mailed your game cheats)
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A default config file

(renderer
(show_timers TRUE)
(screen_size 640 480)
(clear_color 0.3 0.3 0)

)

(mem
(heap (size 30000000) (name bob))
(enable_tracking TRUE)

)
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Override in app config file

(renderer
(show_timers FALSE)

)

(mem
(heap (name fred))

)

#merge default.dta
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Reloading on-the-fly

* Reload portion of database
* Notify dependent C++
* Must group parameters by user

&




GameDevelopers

Conference

In-memory param editing

 Interface to cycle and change
params

* Provide extra info for editing
e How to save
(box

(width 2 (range 0 10) (step 1) (desc “"Box width"))
(height 3 (range .1 5) (step .1) (desc “"Box height”))

)
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Topic 2: Scripting support
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When you want “code” in data

* Indicated when data is too fragile
or limited

* Total control of program flow
 Wordier than data

« Combine with data, don’t subsume
it with scripting
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Script inside data

(object
(height 10)
(collide
{play “bonk.wav"}
{game add_score 10}

)
)
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Data inside script

{setup_player (name eric) (height 6) (weight 170)}

(launchpad
(run_over ($obj)
{$0obj enter_flight (force 10) (auto_align TRUE)}
)
)

* This data you can hard-code
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Uses for scripting

 Event handling in our Ul and world
systems

e Custom tool plugins

« Command console
 Remote level editing
 C++ messaging system
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Remote level editing

] 1. Load level
Editor » Game ]
2. Preview changes
x 1 1 using serialized

@ script protocol

3. Save level
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Commands look like

{<func> <args>} or {<object> <method> <args>}
{if {game_over} {print “winner”}}
{renderer set_clear_color 1 1 0}

{game add_points {banana worth}}

 DataArray but different type
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Executing func command

array->Command(1)->Execute();

e Lookup C++ “handler” registered
with <func> name

e Call it with actual command array

 Arguments are evaluated inside
handler
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C++ func handler

DataNode Add(DataArray* cmd)

{

// {+ ab}
return cmd->Int(1) + cmd->Int(2);

by

DataRegisterFunc(™+”, Add);

e Returns a node
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Implicit arg evaluation

 Node accessors, by default,
automatically execute commands
and provide return value

e Unless accessed as command

* Trades LISP complexity for a little
danger
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More on scripting

o “Language” is just built-in funcs
— Avoid stupid names

e Optimization: bind handler to
<func> node on first execute

 Document your script hooks
 Not compiled
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Script variables

* Globally named data nodes
* Pointed to by variable nodes

 Automatically evaluate on access,
like commands, by dereferencing
pointer

&




GameDevelopers

Conference

Access from C++ or script

DataVariable("game_time"”) = 500;
{print "game time is” $game_time}
{set $game_time 100}

int time = DataVariable(Ygame_time").Int();
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Dynamic scoping

* Push variables onto a stack
e Use them locally
* Pop stack and restore values

* Trades LISP lexical scoping for
simplicity
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Local variables

{do ($a)
{set $a {some_func}}
{other_func $a}

by

¢ “do” func implements dynamic
scoping for arbitrary body
commands
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Executing object commands

{<object> <method> <args>}

* Look up object by name

DataObject* object = NamespaceFind(<object>);

e Call virtual Handle with command

object->Handle(cmd);
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DataObject

class DataObject
{

const char* name;
virtual DataNode Handle(DataArray*) = 0;

b

 Name stored in a namespace

 Can have NULL name, bind dlrectly
to nodes and vars
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Calling objects

{bob grow 10}
{$focus_character set_speed 5}
{{nearest_object $bomb_position} suffer_damage}

{iterate_materials $mat
{$mat set_alpha 0.5}

by
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Virtual Handle implementation

 Map <method> to C++ methods
using macro language, like MFC

BEGIN_HANDLERS(Person)
HANDLE(grow, OnGrow)
HANDLE_EXPR(height, mHeight)
HANDLE_SUPERCLASS(Parent)
HANDLE_CHECK

END_HANDLERS
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C++ object handler

DataNode Person::0OnGrow(DataArray* cmd)

{
// {object grow 10}

mHeight += cmd->Float(2);
TellMom();
return mHeight;

by

e Or wrap existing C++ method
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Topic 3: Advanced integration
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Script-side funcs

e So scripts can call scripts

{func add1 ($a)
{+ $al}
b

{add1 4} // 5

 Makes DataFuncObj “add1”
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DataFuncObj

class DataFuncQObj

{

DataArray* mFunc;
virtual DataNode Handle(DataArray*);

by

 Handle assigns arguments with
dynamic scoping, executes body
and returns last expression
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Script object handlers

(dude
(hit ($force)
{play “bonk.wav”}
{if {> $force 10} {$this fall_down}}

)

(miss {print “whoosh.wav”})

)

o Associate with C++ object by
DataClass




GameDevelopers

Conference

DataClass

class DataClass: public DataObject
{

DataArray* mHandlers;
DataArray* mParams;
virtual DataNode Handle(DataArray*);

b

 Handle finds <method> then
executes like script func

« Assign Sthis after arg evaluation
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Share handlers with macros

[OBJECT
(miss {play “whoosh.wav”})
(local_hit ($p) {game add_points $p})

]

(banana OBJECT

(hit {$this local_hit 10})
)
(berry OBJECT

(hit {$this local_hit 20)})

)
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More on DataClass

e Supports instance parameters

dude->Set(“strength”, 10);
{$this get strength}

 Script-side classes possible

{class Person <handlers>}
{new Person Bob}
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Calling handlers from C++

 Then can call C++ or script
handlers from either C++ or script

* Use Message class to make
command array

object->Handle(Message(“hit”, 20)); // {*" hit 20}
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Specializing Message

 When designing Message before
handlers

class HitMsg: public Message

{
HitMsg(int points): Message(“hit”, points) {}
int Points() { return mCmd->Int(2); }

¥

object->Handle(HitMsg(20));
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Specialized C++ handling

HANDLE_MSG(HitMsg)

DataNode Object::0OnMsg(const HitMsg& m)

{
return TheGame->AddPoints(m.Points());

by

 Look Ma, no DataArrays!
e Use for all C++ messaging
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Specialized script handling

* Match with specialized macros

 Can then change specialization
without breaking handlers

[HIT hit ($points)]

(object
(HIT {game add_points $points})

&
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Balancing C++ and script

e Use script handlers
— For flexibility and prototyping
— To avoid C++ dependencies
— Reduce C++ subclasses

e Use C++ handlers
— Special arg handling
— Performance, maintainance

&
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Topic: Wrap up
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Script tasks

e Commands that execute over time

{scheduler delay_task 100 {print “100 ticks later”}}
{scheduler interp_task $frame 0 100 {use $frame}}

{scheduler thread_task
{walk_to A}
{wait {near A}}
{walk_to B}

b
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More on tasks

* Must preserve variables used in
script from construction time

 Done now explicitly, investigating
LISP closures

{scheduler delay 100 (preserve $msqg)
{print $msg?}
b
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Script debugging

 Dump script call stack on ASSERT

Error: Something’s not right
Script calls:
arena.dta, line 45
game.dta, line 20

 Print statements!

; * Interactive debugger next
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Conclusion

* Hope this helped to design and use
your data system

e Slides available after GDC at

http://www.harmonixmusic.com/gdc.htm

e Questions?
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