GameDevelopers

Conference

Data-Driven Programming
Made Easy

Eric Malafeew
Harmonix Music Systems
(emalafeew@harmonixmusic.com)

&

GameDevelopers

Conference

Data-driven programming

e Data drives logic
 Parameterization and scripting

* Benefits
— Faster change - test cycle
— Open program to designers
— More reusable C++
— Enables dynamic programming

GameDevelopers

Conference

Our system

* Evolved over 5 years

e LISP inspiration

 Data format + API + script engine
 Small (70K) but widely used

&

GameDevelopers

Conference

Python experience

e Just wanted token—int

* Got token— command string—~
interpreter —function— pyint—int

 Wrapper hell

* 3 Mb tough on 32 Mb console

&

GameDevelopers

Conference

Talk topics

 Working with data

e Scripting support
 Advanced integration
e Wrap up

&

GameDevelopers

Conference

Topic 1: Working with data

&

GameDevelopers

Conference

Data format

* Basic element: arrays

e Array nodes can be any type

— Subarrays, ints, floats, strings,
symbols, more

e Load from file or create

GameDevelopers

Conference

Example: Data file

(menu

(“bacon and eggs”
(price 12.75)
(calories 120)

)

(“fruit and cereal”
(price 11.75)
(calories 12)

)
)

GameDevelopers

Conference

Anti-example: XML file

<menu>
<item>bacon and eggs
<price>12.75</price>
<calories>120</calories>
</item>
<item>fruit and cereal
<price>11.75</price>
<calories>12</calories>
</item>
</menu>

GameDevelopers

Conference

Anti-example: Raw file

e No structure or annotation

“bacon and eggs”
12.75

120

“fruit and cereal”
11.75

12

GameDevelopers

Conference

Memory representation

DataArray
DataNode*
4-byte value (union of int, float, pointers)
4-byte type
Size
File, Line } Packed into 12 bytes
Reference count

e Low overhead
e Serializable

GameDevelopers

Conference

Basic API

// Parse using Flex
DataArray* menu = DataReadFile("menu.dta”),;

// Price
menu->FindArray(“eggs”)->FindFloat(“price”);

// Error message on wrong type
menu->FindArray(“eggs”)->FindInt(“price”);

// Says ‘'12.75" not int (menu.dta, line 3)

GameDevelopers

Conference

Nodes are smart pointers

* Of reference counted types, like
arrays and heap strings

 That’s all to memory management

&

GameDevelopers

Conference

Create your own arrays

// (price 12.75)

DataArray* price = new DataArray(2);
price->Node(0) = “price”;
price->Node(1) = 12.75;

// (eggs (price 12.75))
DataArray* arr = new DataArray(2);

arr->Node(0) = “eggs”;
arr->Node(1) = price; // adds ref count

price->Release();

GameDevelopers

Conference

Don’t actually use strings

e Mostly use “symbols”
 Unique permanent string

* Saves memory for multiple
instances

e Fast pointer comparisons
o Still need heap strings

&

GameDevelopers
Conference

Array searches

menu->FindArray(“eggs”)->FindFloat("price”);

* Of subarrays with symbol tag
e Linear with pointer comparisons

 For more speed, sort subarrays for
binary search

GameDevelopers

Conference

Also in data files

« Comments
e Macros

e #include

e #merge

o #ifdef

&

GameDevelopers

Conference

Macros

* Persistent outside of file
 Multiply reference arrays

[TRUE 1] // (happy TRUE) -> (happy 1)
[RED 1 0 0] // (color RED) -> (color 1 0 0)

[HANDLER (hit {fall_down})]
(objectl HANDLER)
(object2 HANDLER)

GameDevelopers

Conference

Merging data files

* For each subarray, look for match
— Insert if not found
— Recurse if found

(a (b 1)) // original
(a (b 2) (c 2)) // merge
(a(b1l)(c?2))// result

GameDevelopers

Conference

Cache files for fast loading

* Avoid text parsing
* Load then serialize into binary file

* Requires special handling of
macros and #ifdef

&

GameDevelopers

Conference

Program configuration

* Load config file at startup
* Globally accessible

 Encrypt on caching (or you may be
mailed your game cheats)

&

GameDevelopers

Conference

A default config file

(renderer
(show_timers TRUE)
(screen_size 640 480)
(clear_color 0.3 0.3 0)

)

(mem
(heap (size 30000000) (name bob))
(enable_tracking TRUE)

)

GameDevelopers

Conference

Override in app config file

(renderer
(show_timers FALSE)

)

(mem
(heap (name fred))

)

#merge default.dta

GameDevelopers

Conference

Reloading on-the-fly

* Reload portion of database
* Notify dependent C++
* Must group parameters by user

&

GameDevelopers

Conference

In-memory param editing

 Interface to cycle and change
params

* Provide extra info for editing
e How to save
(box

(width 2 (range 0 10) (step 1) (desc “"Box width"))
(height 3 (range .1 5) (step .1) (desc “"Box height”))

)

GameDevelopers

Conference

Topic 2: Scripting support

&

GameDevelopers

Conference

When you want “code” in data

* Indicated when data is too fragile
or limited

* Total control of program flow
 Wordier than data

« Combine with data, don’t subsume
it with scripting

&

GameDevelopers

Conference

Script inside data

(object
(height 10)
(collide
{play “bonk.wav"}
{game add_score 10}

)
)

GameDevelopers

Conference

Data inside script

{setup_player (name eric) (height 6) (weight 170)}

(launchpad
(run_over ($obj)
{$0obj enter_flight (force 10) (auto_align TRUE)}
)
)

* This data you can hard-code

GameDevelopers

Conference

Uses for scripting

 Event handling in our Ul and world
systems

e Custom tool plugins

« Command console
 Remote level editing
 C++ messaging system

&

GameDevelopers

Conference

Remote level editing

] 1. Load level
Editor » Game]
2. Preview changes
x 1 1 using serialized

@ script protocol

3. Save level

GameDevelopers

Conference

Commands look like

{<func> <args>} or {<object> <method> <args>}
{if {game_over} {print “winner”}}
{renderer set_clear_color 1 1 0}

{game add_points {banana worth}}

 DataArray but different type

GameDevelopers

Conference

Executing func command

array->Command(1)->Execute();

e Lookup C++ “handler” registered
with <func> name

e Call it with actual command array

 Arguments are evaluated inside
handler

&

GameDevelopers

Conference

C++ func handler

DataNode Add(DataArray* cmd)

{

// {+ ab}
return cmd->Int(1) + cmd->Int(2);

by

DataRegisterFunc(™+”, Add);

e Returns a node

GameDevelopers
Conference

Implicit arg evaluation

 Node accessors, by default,
automatically execute commands
and provide return value

e Unless accessed as command

* Trades LISP complexity for a little
danger

GameDevelopers

Conference

More on scripting

o “Language” is just built-in funcs
— Avoid stupid names

e Optimization: bind handler to
<func> node on first execute

 Document your script hooks
 Not compiled

&

GameDevelopers

Conference

Script variables

* Globally named data nodes
* Pointed to by variable nodes

 Automatically evaluate on access,
like commands, by dereferencing
pointer

&

GameDevelopers

Conference

Access from C++ or script

DataVariable("game_time"”) = 500;
{print "game time is” $game_time}
{set $game_time 100}

int time = DataVariable(Ygame_time").Int();

GameDevelopers

Conference

Dynamic scoping

* Push variables onto a stack
e Use them locally
* Pop stack and restore values

* Trades LISP lexical scoping for
simplicity

&

GameDevelopers

Conference

Local variables

{do ($a)
{set $a {some_func}}
{other_func $a}

by

¢ “do” func implements dynamic
scoping for arbitrary body
commands

GameDevelopers
Conference

Executing object commands

{<object> <method> <args>}

* Look up object by name

DataObject* object = NamespaceFind(<object>);

e Call virtual Handle with command

object->Handle(cmd);

GameDevelopers

Conference

DataObject

class DataObject
{

const char* name;
virtual DataNode Handle(DataArray*) = 0;

b

 Name stored in a namespace

 Can have NULL name, bind dlrectly
to nodes and vars

GameDevelopers

Conference

Calling objects

{bob grow 10}
{$focus_character set_speed 5}
{{nearest_object $bomb_position} suffer_damage}

{iterate_materials $mat
{$mat set_alpha 0.5}

by

GameDevelopers

Conference

Virtual Handle implementation

 Map <method> to C++ methods
using macro language, like MFC

BEGIN_HANDLERS(Person)
HANDLE(grow, OnGrow)
HANDLE_EXPR(height, mHeight)
HANDLE_SUPERCLASS(Parent)
HANDLE_CHECK

END_HANDLERS

GameDevelopers

Conference

C++ object handler

DataNode Person::0OnGrow(DataArray* cmd)

{
// {object grow 10}

mHeight += cmd->Float(2);
TellMom();
return mHeight;

by

e Or wrap existing C++ method

GameDevelopers

Conference

Topic 3: Advanced integration

&

GameDevelopers

Conference

Script-side funcs

e So scripts can call scripts

{func add1 ($a)
{+ $al}
b

{add1 4} // 5

 Makes DataFuncObj “add1”

GameDevelopers

Conference

DataFuncObj

class DataFuncQObj

{

DataArray* mFunc;
virtual DataNode Handle(DataArray*);

by

 Handle assigns arguments with
dynamic scoping, executes body
and returns last expression

GameDevelopers

Conference

Script object handlers

(dude
(hit ($force)
{play “bonk.wav”}
{if {> $force 10} {$this fall_down}}

)

(miss {print “whoosh.wav”})

)

o Associate with C++ object by
DataClass

GameDevelopers

Conference

DataClass

class DataClass: public DataObject
{

DataArray* mHandlers;
DataArray* mParams;
virtual DataNode Handle(DataArray*);

b

 Handle finds <method> then
executes like script func

« Assign Sthis after arg evaluation

GameDevelopers

Conference

Share handlers with macros

[OBJECT
(miss {play “whoosh.wav”})
(local_hit ($p) {game add_points $p})

]

(banana OBJECT

(hit {$this local_hit 10})
)
(berry OBJECT

(hit {$this local_hit 20)})

)

GameDevelopers

Conference

More on DataClass

e Supports instance parameters

dude->Set(“strength”, 10);
{$this get strength}

 Script-side classes possible

{class Person <handlers>}
{new Person Bob}

GameDevelopers

Conference

Calling handlers from C++

 Then can call C++ or script
handlers from either C++ or script

* Use Message class to make
command array

object->Handle(Message(“hit”, 20)); // {*" hit 20}

GameDevelopers

Conference

Specializing Message

 When designing Message before
handlers

class HitMsg: public Message

{
HitMsg(int points): Message(“hit”, points) {}
int Points() { return mCmd->Int(2); }

¥

object->Handle(HitMsg(20));

GameDevelopers
Conference

Specialized C++ handling

HANDLE_MSG(HitMsg)

DataNode Object::0OnMsg(const HitMsg& m)

{
return TheGame->AddPoints(m.Points());

by

 Look Ma, no DataArrays!
e Use for all C++ messaging

GameDevelopers

Conference

Specialized script handling

* Match with specialized macros

 Can then change specialization
without breaking handlers

[HIT hit ($points)]

(object
(HIT {game add_points $points})

&

GameDevelopers

Conference

Balancing C++ and script

e Use script handlers
— For flexibility and prototyping
— To avoid C++ dependencies
— Reduce C++ subclasses

e Use C++ handlers
— Special arg handling
— Performance, maintainance

&

GameDevelopers

Conference

Topic: Wrap up

&

GameDevelopers

Conference

Script tasks

e Commands that execute over time

{scheduler delay_task 100 {print “100 ticks later”}}
{scheduler interp_task $frame 0 100 {use $frame}}

{scheduler thread_task
{walk_to A}
{wait {near A}}
{walk_to B}

b

GameDevelopers

Conference

More on tasks

* Must preserve variables used in
script from construction time

 Done now explicitly, investigating
LISP closures

{scheduler delay 100 (preserve $msqg)
{print $msg?}
b

GameDevelopers

Conference

Script debugging

 Dump script call stack on ASSERT

Error: Something’s not right
Script calls:
arena.dta, line 45
game.dta, line 20

 Print statements!

; * Interactive debugger next

GameDevelopers

Conference

Conclusion

* Hope this helped to design and use
your data system

e Slides available after GDC at

http://www.harmonixmusic.com/gdc.htm

e Questions?

&

	Data-Driven Programming Made Easy
	Data-driven programming
	Our system
	Python experience
	Talk topics
	Topic 1: Working with data
	Data format
	Example: Data file
	Anti-example: XML file
	Anti-example: Raw file
	Memory representation
	Basic API
	Nodes are smart pointers
	Create your own arrays
	Don’t actually use strings
	Array searches
	Also in data files
	Macros
	Merging data files
	Cache files for fast loading
	Program configuration
	A default config file
	Override in app config file
	Reloading on-the-fly
	In-memory param editing
	Topic 2: Scripting support
	When you want “code” in data
	Script inside data
	Data inside script
	Uses for scripting
	Remote level editing
	Commands look like
	Executing func command
	C++ func handler
	Implicit arg evaluation
	More on scripting
	Script variables
	Access from C++ or script
	Dynamic scoping
	Local variables
	Executing object commands
	DataObject
	Calling objects
	Virtual Handle implementation
	C++ object handler
	Topic 3: Advanced integration
	Script-side funcs
	DataFuncObj
	Script object handlers
	DataClass
	Share handlers with macros
	More on DataClass
	Calling handlers from C++
	Specializing Message
	Specialized C++ handling
	Specialized script handling
	Balancing C++ and script
	Topic: Wrap up
	Script tasks
	More on tasks
	Script debugging
	Conclusion

